BREAKING: The Physics Nobel Prize Winner of 2022 just Proved that the "Universe is actually not real"

The fact that the universe is not locally real is one of the more disquieting discoveries of the last half-century. "Real," which indicates that objects have defined attributes independent of observation—for example, an apple can be red even when no one is looking; "local," which means that objects can only be impacted by their surroundings, and that any effect cannot travel faster than light. Quantum physics researchers have discovered that these concepts cannot both be true. Instead, the evidence suggests that objects are not only influenced by their surroundings, and that they may lack distinct properties prior to measurement. "Do you honestly believe the moon isn't there when you're not gazing at it?" Albert Einstein famously asked a friend. This is, of course, deeply contrary to our everyday experiences. To paraphrase Douglas Adams, the demise of local realism has made a lot of people very angry and been widely regarded as a bad move. The accomplishment has now been attributed to three physicists: John Clauser, Alain Aspect, and Anton Zeilinger. They were awarded the Nobel Prize in Physics in 2022 in equal parts "for experiments with entangled photons, establishing the violation of Bell inequalities, and pioneering quantum information science." ("Bell inequalities" alludes to the early 1960s pioneering work of Northern Irish physicist John Stewart Bell, who established the groundwork for this year's Physics Nobel.) Colleagues felt that the trio deserved this punishment for upending reality as we know it. "This is wonderful news. "It had been a long time coming," Sandu Popescu, a quantum physicist at the University of Bristol, says. "There is no doubt that the award is well-deserved." “The experiments beginning with the earliest one of Clauser and continuing along, show that this stuff isn’t just philosophical, it’s real—and like other real things, potentially useful,” says Charles Bennett, an eminent quantum researcher at IBM. “Each year I thought, ‘oh, maybe this is the year,’” says David Kaiser, a physicist and historian at the Massachusetts Institute of Technology. “This year, it really was. It was very emotional—and very thrilling.”